International Maths Wizard Olympiad (IMWO)

CLASS-8 SAMPLE QUESTION PAPER

The Actual Question Paper Contains 50 Questions. The duration of the Test Paper is 60 Minutes.

1. The number $\left(10^{n}-1\right)$ is divisible by 11 for \qquad .
(A) $\mathrm{n} \in \mathrm{N}$
(B) Odd values of n
(C) Even values of n
(D) n is the multiple of 11
(E) None of these
2. The number which is exactly divisible by 99 is \qquad -
(A) 3572404
(B) 135792
(C) 913464
(D) 114345
(E) None of these
3. The least value must be given to \boldsymbol{x} so that the number 91876×2 is divisible by 8 is \qquad -.
(A) 1
(B) 2
(C) 3
(D) 4
(E) None of these
4. If $\begin{gathered}1 A \\ \times A\end{gathered}$, when \boldsymbol{A} and \boldsymbol{B} are single digit numbers, such $\overline{B 6}$
that $B-A=3$, then the values of A and B respectively are \qquad -
(A) 4,5
(B) 9,6
(C) 5,4
(D) 6,9
(E) None of these
\qquad ..
5. 21436587 is divisible by
(B) 5
(A) 2
(D) 9
(E) None of these
6. When a certain number is multiplied by 13 , the product consists entirely of fives. The smallest such number is \qquad .
(A) 41625
(B) 42515
(C) 42735
(D) 42135
(E) None of these
7. The largest natural number by which the product of three consecutive even natural numbers is always divisible, is \qquad -
(A) 16
(B) 24
(C) 48
(D) 96
(E) None of these
8. A 3-digit number ' $c b a$ ' is divisible by 9 if \qquad .
(A) $\mathrm{a}+2 \mathrm{~b}+\mathrm{c}$ is divisible by 9
(B) $2 \mathrm{a}+\mathrm{b}+\mathrm{c}$ is divisible by 9
(C) $\mathrm{a}+\mathrm{b}+2 \mathrm{c}$ is divisible by 9
(D) $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is divisible by 9
(E) None of these
9. If in a number, difference between the sum of digits at its odd places and that of digits at the even places is given 0 , then the number is divisible by \qquad -.
(A) 7
(B) 9
(C) 5
(D) 11
(E) None of these
10. A 5 -digit number $x y 235$ is divisible by 3 such that $x+y<5$, where x and y are digits, then possible values of (x, y) are \qquad -
(A) $(1,1)$ or $(4,0)$
(B) $(1,1)$ or $(2,0)$
(C) $(1,1)$ or $(0,2)$
(D) $(2,0)$ or $(0,2)$
(E) None of these
11. If a 3-digit number 'abc' is divisible by 11 , then \qquad .
(A) $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is a multiple of 11
(B) $\mathrm{a}+\mathrm{b}-\mathrm{c}$ is a multiple of 11
(C) $\mathrm{a}-\mathrm{b}+\mathrm{c}$ is a multiple of 11
(D) $a-b-c$ is a multiple of 11
(E) None of these
12. 'If a number is divisible by any number m, then it will also be divisible by each of the factor of m '. This statement is \qquad
(A) True
(B) False
(C) Sometimes true and sometimes false
(D) All of these
(E) None of these
13. If $31 \mathrm{z} 4+51 \mathrm{z} 3$ is divisible by 3 , where z is digit less than 5 , then the values of z are \qquad _.
(A) 0,1
(B) 0,3
(C) 1,3
(D) 1,4
(E) None of these
